Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

meso-[5,10,15,20-Tetrakis(4-cyanophenyl)porphyrinato]zinc

Shuai Dong and Jianzhuang Jiang*

School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, People's Republic of China Correspondence e-mail: jianzhuang@ustb.edu.cn

Received 2 March 2011; accepted 6 March 2011

Key indicators: single-crystal X-ray study; T = 295 K; mean σ (C–C) = 0.004 Å; R factor = 0.039; wR factor = 0.109; data-to-parameter ratio = 13.0.

In the title compound, $[Zn(C_{48}H_{24}N_8)]$, the coordination environment of the Zn^{2+} ion (site symmetry $\overline{1}$) is octahedral, with four indole N atoms forming the equatorial plane and the axial positions being occupied by N atoms from the cyanide groups of neighbouring molecules. In the crystal, adjacent molecules are assembled into a two-dimensional supramolecular framework parallel to $(\overline{1}01)$ via the coordination bonding. Topology analysis reveals this compound to be a (4,4)-connected network.

Related literature

For background to the use of porphyrins and derivatives, see: Jiang & Ng (2009). For the use of their metal complexes as catalysts, see: Chen et al. (2004). For Zn-N bond lengths in other Zn(II) porphyrin species, see: Muniappan et al. (2006). For the synthesis of the ligand, see: Kumar et al. (1998).

Experimental

Crystal data

$[Zn(C_{48}H_{24}N_8)]$	V = 1920.0 (3) Å ³
$M_r = 778.12$	Z=2
Monoclinic, $P2_1/n$	Mo $K\alpha$ radiation
a = 9.7373 (10) Å	$\mu = 0.69 \text{ mm}^{-1}$
b = 9.4468 (10) Å	$T = 295 { m K}$
c = 21.280 (2) Å	$0.30 \times 0.05 \times 0.05 \text{ mm}$
$\beta = 101.229 \ (2)^{\circ}$	

Data collection

Bruker SMART APEX CCD areadetector diffractometer Absorption correction: multi-scan (SADABS; Sheldrick, 1995) $T_{\min} = 0.726, \ T_{\max} = 0.967$

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.039$ $wR(F^2) = 0.109$ S = 1.053376 reflections

9272 measured reflections 3376 independent reflections 2610 reflections with $I > 2\sigma(I)$ $R_{\rm int} = 0.028$

259 parameters H-atom parameters constrained $\Delta \rho_{\rm max} = 0.34 \text{ e} \text{ Å}^{-3}$ $\Delta \rho_{\rm min} = -0.24$ e Å⁻³

Data collection: APEX2 (Bruker, 2004); cell refinement: SAINT-Plus (Bruker, 2001); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: XP (Sheldrick, 1998); software used to prepare material for publication: XP.

This work was supported by the Natural Science Foundation of China.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: JH2269).

References

Bruker (2001). SAINT-Plus. Bruker AXS Inc., Madison, Wisconsin, USA. Bruker (2004). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.

- Chen, Y., Fields, K. B. & Zhang, X. P. (2004). J. Am. Chem. Soc. 126, 14718-14719
- Jiang, J. & Ng, D. K. P. (2009). Acc. Chem. Res. 42, 79-88.
- Kumar, R. K., Balasubramanian, S. & Goldberg, I. (1998). Inorg. Chem. 37, 541-552
- Muniappan, S., Lipstman, S. & Goldberg, I. (2006). Acta Cryst. C62, m477m479.
- Sheldrick, G. M. (1995). SADABS. University of Göttingen, Germany.
- Sheldrick, G. M. (1998). XP. Bruker AXS Inc., Madison, Wisconsin, USA.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

supplementary materials

Acta Cryst. (2011). E67, m431 [doi:10.1107/S160053681100849X]

meso-[5,10,15,20-Tetrakis(4-cyanophenyl)porphyrinato]zinc

S. Dong and J. Jiang

Comment

Porphyrins and derivatives have been an important class of dyes and pigments with extensive applications in the paints, printing, and textile industries ever since last century (Jiang & Ng, 2009). Their metal complexes are well known catalysts for numerous chemical reactions (Chen *et al.*, 2004). Therefore, it is worthy to prepare corresponding metal complex.

As shown in Fig.1, compound I is a mononuclear neutral complex with a two-dimensional supramolecular configuration. Each Zn(II) atom is octa-coordinated completed by four indole nitrogen atoms and two nitrogen atoms of cyanogen groups. The bond length is in line with the distances of Zn—N in other Zn(II) porphyrin species (Muniappan *et al.*, 2006). The neighboring Zn(TCPP) molecules are connected *via* the coordination bonding, forming a two-dimensional supramolecular network. The Zn(II) ion is treated as a node, this compound is a (4,4)-connected network, Figure 2.

Experimental

The H₂TCPP ligand was synthesized according to the previous literature(Kumar *et al.*, 1998). The synthesis method of the compound **I** was obtained by allowing the mixure of $Zn(OAc)_2$ (0.02 g, 0.1 mmol) and H₂TCPP (0.072 g, 0.1 mmol), and 15 mL DMF was sealed in 25 ml Teflon-lined stainless steel reactor, which was heated to 110°C. Purple block-shaped crystals suitable for X-ray diffraction analysis were separated by filtration with the yield of 35%.

Refinement

All H-atoms bound to carbon were refined using a riding model with distance C—H = 0.93 Å, $U_{iso} = 1.2U_{eq}$ (C) for aromatic atoms and C—H = 0.96 Å.

Figures

Fig. 1. A view of (I) with the unique atom-labelling scheme. Displacement ellipsoids are drawn at the 30% probability level, hydrogen atoms are omited for clarity.

Fig. 2. A view of two-dimensional supramolecular configuration of (I).

meso-[5,10,15,20-Tetrakis(4-cyanophenyl)porphyrinato]zinc

Crystal data

$[Zn(C_{48}H_{24}N_8)]$	F(000) = 796
$M_r = 778.12$	$D_{\rm x} = 1.346 {\rm ~Mg~m^{-3}}$
Monoclinic, $P2_1/n$	Mo K α radiation, $\lambda = 0.71073$ Å
Hall symbol: -P 2yn	Cell parameters from 2737 reflections
a = 9.7373 (10) Å	$\theta = 2.4 - 25.3^{\circ}$
b = 9.4468 (10) Å	$\mu = 0.69 \text{ mm}^{-1}$
c = 21.280 (2) Å	T = 295 K
$\beta = 101.229 \ (2)^{\circ}$	Needle, purple
$V = 1920.0 (3) \text{ Å}^3$	$0.30 \times 0.05 \times 0.05 \text{ mm}$
Z = 2	

Data collection

Bruker SMART APEX CCD area-detector diffractometer	3376 independent reflections
Radiation source: fine-focus sealed tube	2610 reflections with $I > 2\sigma(I)$
graphite	$R_{\rm int} = 0.028$
Detector resolution: 0 pixels mm ⁻¹	$\theta_{\text{max}} = 25.0^{\circ}, \ \theta_{\text{min}} = 2.0^{\circ}$
ω scans	$h = -10 \rightarrow 11$
Absorption correction: multi-scan (<i>SADABS</i> ; Sheldrick, 1995)	$k = -11 \rightarrow 11$
$T_{\min} = 0.726, T_{\max} = 0.967$	$l = -22 \rightarrow 25$
9272 measured reflections	

Refinement

Refinement on F^2	Primary atom site location: structure-invariant direct methods
Least-squares matrix: full	Secondary atom site location: difference Fourier map
$R[F^2 > 2\sigma(F^2)] = 0.039$	Hydrogen site location: inferred from neighbouring sites
$wR(F^2) = 0.109$	H-atom parameters constrained
<i>S</i> = 1.05	$w = 1/[\sigma^{2}(F_{o}^{2}) + (0.0599P)^{2} + 0.3654P]$ where $P = (F_{o}^{2} + 2F_{c}^{2})/3$
3376 reflections	$(\Delta/\sigma)_{\text{max}} = 0.001$
259 parameters	$\Delta \rho_{max} = 0.34 \text{ e} \text{ Å}^{-3}$
0 restraints	$\Delta \rho_{min} = -0.24 \text{ e } \text{\AA}^{-3}$

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*-factors based on ALL data will be even larger.

	x	у	Ζ	$U_{\rm iso}*/U_{\rm eq}$
Zn1	1.0000	0.0000	1.0000	0.03997 (16)
N2	0.9529 (2)	0.0662 (2)	1.08533 (8)	0.0377 (5)
C5	1.0664 (3)	-0.1265 (3)	1.15417 (10)	0.0382 (6)
C10	0.8349 (2)	0.2917 (3)	1.04962 (11)	0.0379 (6)
N1	1.0918 (2)	-0.1781 (2)	1.04326 (8)	0.0370 (5)
C4	1.1139 (3)	-0.2084 (3)	1.10731 (11)	0.0388 (6)
C16	1.0114 (3)	-0.2648 (3)	1.24674 (12)	0.0565 (7)
H16	0.9250	-0.2874	1.2216	0.068*
C13	1.2649 (3)	-0.1964 (3)	1.32212 (13)	0.0590 (8)
H13	1.3505	-0.1722	1.3475	0.071*
C9	0.8856 (3)	0.1885 (3)	1.09594 (11)	0.0399 (6)
C14	1.1741 (3)	-0.2811 (3)	1.34609 (11)	0.0487 (7)
C18	0.6411 (3)	0.3997 (3)	1.09533 (13)	0.0508 (7)
H18	0.6022	0.3099	1.0958	0.061*
C11	1.1027 (3)	-0.1798 (3)	1.22180 (10)	0.0390 (6)
N3	1.2522 (4)	-0.3731 (3)	1.46169 (12)	0.0859 (9)
C20	0.6318 (3)	0.6457 (3)	1.11635 (13)	0.0542 (7)
C8	0.8808 (3)	0.1975 (3)	1.16333 (12)	0.0516 (7)
H8	0.8407	0.2701	1.1832	0.062*
C12	1.2296 (3)	-0.1464 (3)	1.26005 (12)	0.0535 (7)
H12	1.2924	-0.0895	1.2439	0.064*
C23	0.7632 (3)	0.4171 (3)	1.07089 (11)	0.0397 (6)
C21	0.7496 (3)	0.6674 (3)	1.09048 (12)	0.0539 (7)
H21	0.7846	0.7584	1.0880	0.065*
C6	0.9912 (3)	-0.0002 (2)	1.14336 (11)	0.0386 (6)
C17	1.2141 (4)	-0.3342 (3)	1.41096 (13)	0.0638 (8)
C22	0.8154 (3)	0.5528 (3)	1.06823 (12)	0.0474 (6)
H22	0.8955	0.5673	1.0514	0.057*
C24	0.5695 (4)	0.7637 (4)	1.14423 (19)	0.0853 (11)
C19	0.5774 (3)	0.5122 (3)	1.11873 (15)	0.0558 (7)
H19	0.4980	0.4981	1.1361	0.067*
C7	0.9447 (3)	0.0823 (3)	1.19189 (11)	0.0503 (7)
H7	0.9568	0.0599	1.2352	0.060*
C15	1.0462 (3)	-0.3172 (3)	1.30882 (13)	0.0585 (8)
H15	0.9844	-0.3756	1.3250	0.070*
C1	1.1545 (3)	-0.2842 (3)	1.01528 (11)	0.0390 (6)
C2	1.2155 (3)	-0.3853 (3)	1.06340 (12)	0.0498 (7)
H2	1.2628	-0.4678	1.0567	0.060*

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

supplementary materials

C3	1.1911 (3)	-0.3379 (3)	1.11993 (12)	0.0500 (7)
H3	1.2191	-0.3810	1.1597	0.060*
N4	0.5198 (5)	0.8532 (4)	1.1673 (2)	0.1405 (17)

Atomic displacement parameters (\AA^2)

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Zn1	0.0588 (3)	0.0366 (3)	0.0254 (2)	0.01046 (19)	0.01037 (17)	0.00220 (16)
N2	0.0477 (12)	0.0378 (11)	0.0285 (10)	0.0083 (10)	0.0098 (9)	0.0020 (9)
C5	0.0476 (14)	0.0389 (14)	0.0275 (12)	0.0001 (11)	0.0061 (10)	0.0028 (10)
C10	0.0418 (13)	0.0395 (14)	0.0324 (12)	0.0046 (11)	0.0075 (10)	-0.0015 (10)
N1	0.0479 (12)	0.0367 (11)	0.0263 (9)	0.0073 (9)	0.0070 (8)	-0.0001 (8)
C4	0.0497 (14)	0.0358 (13)	0.0297 (12)	0.0037 (11)	0.0048 (10)	0.0021 (10)
C16	0.0678 (19)	0.0610 (18)	0.0364 (14)	-0.0128 (15)	-0.0002 (13)	0.0056 (13)
C13	0.0562 (17)	0.076 (2)	0.0393 (15)	0.0041 (16)	-0.0047 (13)	0.0030 (14)
C9	0.0471 (14)	0.0415 (14)	0.0319 (12)	0.0050 (11)	0.0097 (10)	-0.0008 (10)
C14	0.0720 (19)	0.0447 (15)	0.0280 (12)	0.0195 (14)	0.0063 (13)	0.0003 (11)
C18	0.0547 (16)	0.0402 (15)	0.0610 (17)	0.0013 (13)	0.0195 (13)	-0.0009 (13)
C11	0.0523 (15)	0.0365 (13)	0.0277 (12)	0.0063 (11)	0.0068 (11)	0.0001 (10)
N3	0.129 (3)	0.088 (2)	0.0374 (14)	0.0310 (19)	0.0062 (15)	0.0121 (14)
C20	0.0636 (18)	0.0475 (17)	0.0531 (17)	0.0133 (14)	0.0152 (14)	-0.0054 (13)
C8	0.0727 (18)	0.0519 (17)	0.0327 (13)	0.0172 (14)	0.0168 (13)	-0.0011 (12)
C12	0.0564 (17)	0.0639 (19)	0.0394 (14)	-0.0039 (14)	0.0075 (13)	0.0074 (13)
C23	0.0472 (14)	0.0391 (15)	0.0315 (12)	0.0068 (11)	0.0049 (10)	-0.0009 (11)
C21	0.075 (2)	0.0362 (15)	0.0485 (16)	-0.0011 (14)	0.0061 (14)	-0.0061 (12)
C6	0.0490 (14)	0.0399 (14)	0.0270 (11)	0.0027 (11)	0.0076 (10)	0.0011 (10)
C17	0.092 (2)	0.0591 (19)	0.0392 (16)	0.0252 (17)	0.0088 (15)	0.0042 (14)
C22	0.0531 (16)	0.0479 (15)	0.0417 (14)	0.0013 (13)	0.0102 (12)	-0.0025 (12)
C24	0.105 (3)	0.050 (2)	0.111 (3)	0.0098 (19)	0.047 (2)	-0.013 (2)
C19	0.0550 (17)	0.0512 (18)	0.0669 (19)	0.0081 (14)	0.0254 (14)	-0.0049 (14)
C7	0.0736 (19)	0.0507 (17)	0.0288 (13)	0.0152 (14)	0.0149 (12)	0.0045 (12)
C15	0.085 (2)	0.0498 (17)	0.0425 (15)	-0.0079 (16)	0.0159 (15)	0.0093 (13)
C1	0.0441 (14)	0.0393 (14)	0.0330 (12)	0.0067 (11)	0.0061 (11)	0.0006 (10)
C2	0.0650 (18)	0.0457 (15)	0.0378 (14)	0.0208 (13)	0.0077 (12)	0.0026 (12)
C3	0.0685 (18)	0.0485 (16)	0.0310 (13)	0.0172 (14)	0.0049 (12)	0.0081 (11)
N4	0.181 (4)	0.070(2)	0.197 (4)	0.024 (3)	0.101 (3)	-0.036 (3)

Geometric parameters (Å, °)

Zn1—N1 ⁱ	2.0391 (19)	C18—C19	1.372 (4)
Zn1—N1	2.0391 (19)	C18—C23	1.396 (4)
Zn1—N2	2.0546 (18)	C18—H18	0.9300
Zn1—N2 ⁱ	2.0546 (18)	C11—C12	1.377 (4)
Zn1—N3 ⁱⁱ	2.675 (2)	N3—C17	1.132 (3)
Zn1—N3 ⁱⁱⁱ	2.675 (2)	C20—C19	1.372 (4)
N2—C9	1.369 (3)	C20—C21	1.381 (4)
N2—C6	1.370 (3)	C20—C24	1.450 (4)
C5—C6	1.396 (3)	C8—C7	1.339 (4)

C5-C11 1.501 (3) C12-H12 C10-C9 1.406 (3) C23-C22	0.9300
C10–C9 1.406 (3) C23–C22	
	1.384 (4)
C10-C1 ⁱ 1.406 (3) C21-C22	1.387 (4)
C10-C23 1.490 (3) C21-H21	0.9300
N1-C4 1.368 (3) C6-C7	1.435 (3)
N1-C1 1.368 (3) C22-H22	0.9300
C4-C3 1434 (3) $C24-N4$	1 134 (4)
C16—C11 1 379 (4) C19—H19	0.9300
C16—C15 1 390 (4) C7—H7	0.9300
C16—H16 0.9300 C15—H15	0.9300
C13—C14 $1.363(4)$ C1—C10 ⁱ	1.406 (3)
C_{13} C_{12} C_{13} C_{14} C	1 441 (3)
C_{13} H_{13} C_{13} C	1 348 (3)
C9-C8 1446(3) $C2-H2$	0.9300
C14-C15 1 383 (4) $C3-H3$	0.9300
C14—C17 1.449 (4)	0.9500
N1 ⁱ —Zn1—N1 180.000 (1) C19—C20—C24	119.7 (3)
$N1^{i}$ Zn1 N2 89.67 (7) C21 C20 C24	119.7 (3)
N1—Zn1—N2 90.33 (7) C7—C8—C9	107.5 (2)
$N1^{i}$ _Zn1_ $N2^{i}$ 90.33 (7) C7_C8_H8	126.3
N1—Zn1—N2 ⁱ 89.67 (7) C9—C8—H8	126.3
$N2 - 7n1 - N2^{i}$ 180.000 (1) C11 - C12 - C13	121.0 (3)
$C9 = N2 = C6 \qquad 106.99(18) \qquad C11 = C12 = H12$	119 5
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	119.5
C6-N2-Zn1 126.09 (16) $C22-C23-C18$	118.1.(2)
C6-C5-C4 $125.9(2)$ $C22-C23-C10$	121.7(2)
C6-C5-C11 117.6 (2) C18-C23-C10	1202(2)
C4-C5-C11 $1165(2)$ $C20-C21-C22$	1196(3)
$C9 - C10 - C1^{i}$ 1248(2) $C20 - C21 - H21$	120.2
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	120.2
$C1^{i}$ $C10$ $C23$ $117.8(2)$ $N2$ $C6$ $C5$	125.5 (2)
C4-N1-C1 106 49 (18) N2-C6-C7	1094(2)
C4-N1-Zn1 126 31 (16) $C5-C6-C7$	105.1(2) 125.1(2)
C1-N1-Zn1 126.96 (15) N3-C17-C14	176 4 (4)
N1-C4-C5 $1255(2)$ $C23-C22-C21$	170.7(3)
N1-C4-C3 $109.9(2)$ $C23-C22-H22$	119.6
$C_5 = C_4 = C_3$ $124.6(2)$ $C_{21} = C_{22} = H_{22}$	119.6
$C_{11} - C_{16} - C_{15}$ $C_{12} + C_{20} + C$	177.9 (4)
C11_C16_H16 119.4 C20_C19_C18	1196(3)
C15-C16-H16 119.4 C20-C19-H19	120.2
C14—C13—C12 120.0 (3) C18—C19—H19	120.2
	107.4 (2)
C14—C13—H13 120.0 C8—C7—C6	
C14—C13—H13 120.0 C8—C7—C6 C12—C13—H13 120.0 C8—C7—H7	126.3
C14—C13—H13 120.0 C8—C7—C6 C12—C13—H13 120.0 C8—C7—H7 N2—C9—C10 125.7 (2) C6—C7—H7	126.3 126.3
C14—C13—H13 120.0 C8—C7—C6 C12—C13—H13 120.0 C8—C7—H7 N2—C9—C10 125.7 (2) C6—C7—H7 N2—C9—C8 108.8 (2) C14—C15—C16	126.3 126.3 118.9 (3)

supplementary materials

C13—C14—C15	120.5 (2)	C16—C15—H15	120.6	
C13—C14—C17	119.1 (3)	N1—C1—C10 ⁱ	126.1 (2)	
C15—C14—C17	120.4 (3)	N1—C1—C2	109.5 (2)	
C19—C18—C23	121.4 (3)	C10 ⁱ —C1—C2	124.4 (2)	
C19—C18—H18	119.3	C3—C2—C1	107.1 (2)	
C23—C18—H18	119.3	С3—С2—Н2	126.5	
C12—C11—C16	118.5 (2)	С1—С2—Н2	126.5	
C12—C11—C5	120.5 (2)	C2—C3—C4	107.1 (2)	
C16—C11—C5	121.0 (2)	С2—С3—Н3	126.5	
C19—C20—C21	120.5 (3)	С4—С3—Н3	126.5	
Symmetry codes: (i) $-x+2$, $-y$, $-z+2$; (ii) $-x+5/2$, $y+1/2$, $-z+5/2$; (iii) $x-1/2$, $-y-1/2$, $z-1/2$.				

Fig. 1

